Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Document Type
Year range
1.
Indonesian Biomedical Journal ; 15(2):179-184, 2023.
Article in English | Scopus | ID: covidwho-2312649

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects humans' lower respiratory tracts and causes coronavirus disease-2019 (COVID-19). Neutralizing antibodies is one of the adaptive immune system responses that can reduce SARS-CoV-2 infection. This study aimed to develop a SARS-CoV-2 neutralization assay system using pseudo-lentivirus. METHODS: The plasmid used for pseudo-lentivirus production was characterized using restriction analysis. The gene encoding for SARS-CoV-2 spike protein was confirmed using sequencing. The transfection pseudolentivirus optimal condition was determined by choosing the transfection reagents and adding centrifugation step. Optimal pseudo-lentivirus infection was analysed using fluorescent assay and luciferase assay. The optimal condition of pseudo-lentivirus infection was determined by the target cell type and the number of pseudo-lentiviruses used for neutralization test. SARS-CoV-2 pseudo-lentivirus was used to detect neutralizing antibodies from serum samples. RESULTS: The plasmid used for pseudo-lentivirus production was characterized and confirmed to have no mutations. Lipofectamine 2000 reagent generated pseudolentivirus with a higher ability to infect target cells, as indicated by a percentage green fluorescent protein (GFP) of 12.68%. Pseudo-lentivirus centrifuged obtained more stable results in luciferase expression. Optimal pseudo-lentivirus infection conditions were obtained using puromycinselected HEK 293T-ACE2 cells as target cells. The number of pseudo-lentiviruses used in the neutralization assay system was multiplicity of infection (MOI) 0.075. Serum A samples with a 1:10 dilution had the highest neutralizing antibody activity. CONCLUSION: This study shows that SARS-CoV-2 neutralization assay system using pseudo-lentivirus successfully detected neutralizing antibodies in human serum, which were indicated by a decrease in the percentage of pseudo-lentivirus infections. © 2023 The Prodia Education and Research Institute

2.
Drug Delivery System ; 37(5):372-376, 2022.
Article in Japanese | EMBASE | ID: covidwho-2271309

ABSTRACT

The history of humankind has been a battle against infectious diseases, and highly lethal viral infections have appeared many times. Even in Japan, one-fourth of the population was lost due to smallpox during the Nara period. In the modern era, effective vaccines and drugs were developed, and everyone was optimistic that infectious diseases could be eradicated from the earth by the end of the 20 th century. However, infectious diseases such as AIDS, influenza, SARS, and MERS emerged. In particular, the novel coronavirus pandemic that occurred in Wuhan, China, at the end of 2019 exposed the vulnerability of modern society to infectious diseases. Furthermore, infectious diseases are undergoing significant changes due to human factors such as globalization and the destruction of nature. In this review, I would like to outline the infectious diseases that humans have experienced so far and introduce the fight against the new coronavirus and future infectious disease countermeasures.Copyright © 2022, Japan Society of Drug Delivery System. All rights reserved.

3.
Drug Delivery System ; 37(5):372-376, 2022.
Article in Japanese | EMBASE | ID: covidwho-2271308

ABSTRACT

The history of humankind has been a battle against infectious diseases, and highly lethal viral infections have appeared many times. Even in Japan, one-fourth of the population was lost due to smallpox during the Nara period. In the modern era, effective vaccines and drugs were developed, and everyone was optimistic that infectious diseases could be eradicated from the earth by the end of the 20 th century. However, infectious diseases such as AIDS, influenza, SARS, and MERS emerged. In particular, the novel coronavirus pandemic that occurred in Wuhan, China, at the end of 2019 exposed the vulnerability of modern society to infectious diseases. Furthermore, infectious diseases are undergoing significant changes due to human factors such as globalization and the destruction of nature. In this review, I would like to outline the infectious diseases that humans have experienced so far and introduce the fight against the new coronavirus and future infectious disease countermeasures.Copyright © 2022, Japan Society of Drug Delivery System. All rights reserved.

4.
Drug Delivery System ; 37(5):372-376, 2022.
Article in Japanese | EMBASE | ID: covidwho-2271307

ABSTRACT

The history of humankind has been a battle against infectious diseases, and highly lethal viral infections have appeared many times. Even in Japan, one-fourth of the population was lost due to smallpox during the Nara period. In the modern era, effective vaccines and drugs were developed, and everyone was optimistic that infectious diseases could be eradicated from the earth by the end of the 20 th century. However, infectious diseases such as AIDS, influenza, SARS, and MERS emerged. In particular, the novel coronavirus pandemic that occurred in Wuhan, China, at the end of 2019 exposed the vulnerability of modern society to infectious diseases. Furthermore, infectious diseases are undergoing significant changes due to human factors such as globalization and the destruction of nature. In this review, I would like to outline the infectious diseases that humans have experienced so far and introduce the fight against the new coronavirus and future infectious disease countermeasures.Copyright © 2022, Japan Society of Drug Delivery System. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL